MLOps

Как устроена платформа автоматизации процессов разработки MLOps Platform #CloudMTS

В прошлой статье я рассказывал, как мы строим сервисы для разработчиков ИИ и, в частности, коснулся истории появления нашей MLOps Platform. Сегодня мне хотелось бы показать ее изнутри — поделиться возможностями и показать инструменты под капотом.

Надеюсь, получилось достаточно подробно. А для всего остального есть комментарии: не стесняйтесь задавать вопросы, я обязательно отвечу всем интересующимся. Поехали!

CloudMTS

Итак, когда мы построили наш GPU SuperCloud, мы поняли, что у некоторых заказчиков есть спрос на услугу «здесь и сейчас». У кого-то горят сроки реализации проекта. Другим не хватает «инженерных» рук. Поэтому мы решили сделать инструмент, который позволял бы прийти «на все готовое». И построили MLOps Platform.

Строим сервисы для разработчиков ИИ: как в МТС GPU SuperCloud эволюционировал до автоматизированной MLOps Platform

Роботы вошли в нашу жизнь. Мы пользуемся ими на повседневной основе, подчас даже не замечая этого. ИИ звонит нам и отвечает на наши звонки. Сейчас даже проезд в метро можно оплатить лицом.

Динамичный рост рынка технологий искусственного интеллекта закономерно породил спрос на инфраструктуру для их разработки. Особенность построения моделей искусственного интеллекта состоит в том, что для их обучения требуются очень мощные и производительные решения. Под катом мы поговорим о том, как начался наш путь в сервисы для ИИ и к чему мы пришли сейчас. Коснемся и исторических моментов, и планов на ближайшее будущее.